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Abstract. A nonrelativistic Hamiltonian with plausible spin dependent corrections is proposed for the
quarkonia below their respective strong decay thresholds. With only six free parameters this model re-
produces the nine known masses of the bottomonia within about 1 MeV, the six known masses of the
charmonia within a few MeV and the five known leptonic decay widths of the 3S1 states within about
20 %. The model is then used to predict the masses of the remaining 43 quarkonia (some of them for the
first time) and of the leptonic decay widths of the two 1S0(bc) states. Comparison with some other models
is made.

1 Introduction

In the present paper we study the mass spectra of heavy
quarkonia below their strong decay thresholds, i.e. below
10558 MeV for the bb quarkonia, below 7144 MeV for the
bc quarkonia and below 3729 MeV for the cc quarkonia.
For the quarkonia with unnatural parity, which because
of the conservation laws cannot decay strongly into two
pseudoscalar mesons, these thresholds should be a little
higher. In practice this distinction is important only for
the quarkonia 2P1(bc) and 2P1′(bc), which according to
our calculation have masses above the minimal thresholds
given above, but below their real threshold, which is 7189
MeV. As a byproduct we obtain the leptonic widths of
the 3S1 states of the bb and of the cc quarkonia, as well
as of the 1S0 states of the bc quarkonia. Experimentally,
out of the 34 bb quarkonia expected nine have been ob-
served. Here and in the following we consider a particle
as observed, if it is listed as firmly established in the 1996
Particle Data Group Tables [1]. Out of the eight expected
cc quarkonia six have been observed and only the singlet
P state and the excited ηc are still missing. The masses
of both have been reported [1], but they are not consid-
ered as firmly established. None of the bc quarkonia has
been observed, but candidates have been reported [2] and
discoveries are expected in the near future.

In our previous paper [3] (further quoted I) we have
pointed out that a simple nonrelativistic model can re-
produce, among other things, the masses of the known
3S(bb) states and of the centres of gravity of the known
3P (bb) states within the experimental errors. After this
paper had been published, we became aware of a series
of papers (cf. [4] and papers quoted there) using essen-
tially the same potential. There are many models, which
give good fits to the masses of the bb quarkonia. The re-
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view paper [5] quotes and discusses about 30 of them. Our
model, however, seems to be the only one so far, which re-
produces these masses within the experimental errors, i.e.
with a precision of about 0.5 MeV, which corresponds to
50 ppm. of the total mass, or to 0.1 per cent of the first ex-
citation energy. This result is amazing, because the mean
square velocity of a b-quark in the ground state of the
bb system is, in a system of units where the velocity of
light c = 1, 〈v2〉 ≈ 0.08. Thus a simple-minded estimate
of the relativistic corrections would give 〈v2〉2 ≈ 0.6% of
the total mass. The usual interpretation is that the non-
relativistic Hamiltonian is an effective Hamiltonian and
that the relativistic corrections are taken into account by
a renormalization of the parameters of this Hamiltonian.

In the present paper we extend the model described
in I in two ways. Firstly, we generalize the nonrelativistic
potential so that it applies also to bc and cc quarkonia.
This requires one more parameter — the mass of the c-
quark. We find that the predictions for the cc quarkonia
agree with experiment within about 4 MeV i.e. within
about 0.1 per cent of the total mass, or one per cent of
the first excitation energy. Since the mean square velocity
of the c-quark in the ground state of the cc system is about
0.25, i.e. the mean root square velocity is about half the
velocity of light, this good fit is even more striking than
that for the bb case. Then we make predictions for the
yet undiscovered states hoping that, since our fits for the
known states are good, the predictions will also work. One
should keep in mind, however, that the problem of the
bc quarkonia is not just an extrapolation between the bb
and cc cases. If our handling of the effects of the mass
difference between the two constituents is faulty, the error
of the predictions may be larger than expected.

Secondly, we supplement our nonrelativistic Hamilto-
nian with the standard spin-dependent terms. With one
more parameter – the coupling constant αs(m2

c) – we de-
scribe all the hyperfine and fine splittings, as well as the



108 L. Motyka, K. Zalewski: Mass spectra and leptonic decay widths of heavy quarkonia

Table 1. Mass spectrum of the b̄b quarkonia below the threshold for strong decays (2mB =
10558 MeV) in MeV. ∆X denotes the difference between the mass of particle X and the centre
of gravity of the spin triplet part of the multiplet, where X belongs

State KR EQ Present Exp. State KR EQ Present
[9] [7] paper [9] [7] paper

∆1 1S0 – -87 -56.7 – 1 3D (c.o.g.) 10156 10127 10155
1 3S1 – 9464 9460 9460 ∆1 3D3 +4 +3 +7.5

1 3P (c.o.g.) 9903 9873 9900 9900 ∆1 3D2 0 -1 -2.2
∆1 3P2 – +13 +13 +13 ∆1 3D1 -6 -7 -14
∆1 3P1 – -9 -8.6 -8 ∆1 1D2 0 0 0
∆1 3P0 – -39 -39 -40 1 3F (c.o.g.) 10348 – 10348
∆1 1P1 0 0 0 – ∆1 3F4 0 – +5.1
∆2 1S0 – -44 -28 – ∆1 3F3 +1 – -0.9
2 3S1 – 10007 10023 10023 ∆1 3F2 0 – -7.9

2 3P (c.o.g.) 10259 10231 10260 10260 ∆1 1F3 0 – 0
∆2 3P2 – +11 +9.1 +9 2 3D (c.o.g.) 10441 – 10438
∆2 3P1 – -7 -6.0 -5 ∆2 3D3 +3 – +6.0
∆2 3P0 – -32 -27 -28 ∆2 3D2 0 – -1.8
∆2 1P1 0 0 0 ∆2 3D1 -6 – -11
∆3 1S0 – -41 -20 – ∆2 1D2 0 – 0
3 3S1 – 10339 10355 10355 1 3G (c.o.g.) – – 10508

3 3P (c.o.g.) 10520 – 10525 – ∆1 3G4 – – +3.8
∆3 3P2 +6 – +7.3 – ∆1 3G3 – – -0.4
∆3 3P1 -4 – -4.9 – ∆1 3G2 – – -5.4
∆3 3P0 -19 – -22 – ∆1 1G3 – – 0
∆3 1P1 0 – 0 –

leptonic decay widths. The value of αs(m2
c) is so plausible

– it corresponds to αs(m2
Z) = 0.115 – that one can either

interpret it as a determination of αs(m2
Z), or as a known

quantity and not a free parameter. We choose the former
possibility. By comparison with experiment we find that
the errors of the calculated splittings do not exceed about
1 MeV for the bb systems and about 5 MeV for the cc
systems. Also the leptonic decay widths agree reasonably
well with experiment. Again by analogy we expect that
our predictions for the yet undiscovered states should be
good.

2 Spin averaged masses of spin triplet states

The nonrelativistic potential used in the present paper for
the colour-singlet QQ-systems, where Q may, but does not
have to, be the charge conjugate of Q, is

V (r) = mQ +mQ −0.78891+0.70638
√
r−0.32525

1
r
, (1)

where all the constants are in suitable powers of GeV and
the quark masses are

mb = 4.8030 GeV, mc = 1.3959 GeV (2)

For the bc quarkonia we use the reduced mass

µbc =
mbmc

mb +mc
= 1.0816 GeV. (3)

The parameters are given with so many digits only in or-
der to assist the reader, who would like to check our cal-
culations. We do not claim to have established the quark
masses with such accuracies. Similar remarks apply to cou-
pling constants etc. given further. For the bb system this
potential reduces to the potential given in I.

According to our interpretation the eigenvalues of the
nonrelativistic Hamiltonian with this potential should be
interpreted as the masses of the centres of gravity of the
spin triplets. Another popular interpretation is that the
nonrelativistic Hamiltonian should give the centres of grav-
ity of the full spin multiplets. Let us consider first the bb
and cc quarkonia. For the L > 0 states in our model and
in many others the mass of the spin singlet component
of each multiplet coincides with the centre of gravity of
the spin triplet. Thus the two interpretations are equiva-
lent. The difference occurs only for the S-states. Since the
success of the nonrelativistic models depends on a cancel-
lation of errors, which is not understood, we cannot give
a rigorous argument to justify one interpretation rather
than the other. Let us quote, however, two plausibility ar-
guments. Roncaglia and collaborators [6] explain that the
spectrum of triplet states should be particularly regular.
We chose the centres of gravity of the triplets for the prac-
tical reasons that the masses of the spin singlets for the
bb quarkonia are not known. A posteriori, however, we see
that this choice has worked, which supports the conjecture
that it is an acceptable one. For the bc quarkonia the sit-
uation is even more confused, because spin, in general, is
not a good quantum number. We assume tentatively that
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Table 2. Mass spectrum of the c̄c quarkonia below the thresh-
old for strong decays (2mD = 3729 MeV) in MeV. ∆X denotes
the difference between the mass of particle X and the centre
of gravity of the spin triplet part of the multiplet, where X
belongs

State EQ GJ Present Exp.
[7] [10] paper

∆1 1S0 -117 -117 -117 -117
1 3S1 3097 3097 3097 3097

1 P (c.o.g.) 3492 3526 3521 3525
∆1 3P2 +15 +31 +31 +31
∆1 3P1 -6 -15 -19 -15
∆1 3P0 -56 -110 -100 -110
∆1 1P1 +1 1 0 +1??
∆2 1S0 -78 -68 -72 -92??
2 3S1 3686 3685 3690 3686

the eigenvalues of the nonrelativistic Hamiltonian corre-
spond to the centres of gravity of the spin triplets, when
the singlet-triplet mixing is switched off. For L > 0 the
difference between these centres of gravity and the cen-
tres of gravity of the whole spin multiplets are small – 3
MeV, 2 MeV and 0.8 MeV for the 1P , 2P and 1D mul-
tiplets respectively. For the S-states the situation should
be similar to that for the other quarkonia.

The results of our calculation for the ten bb masses
of interest are given in Table 1. In the five cases, where
comparison with experiment is possible, agreement is very
good. A comparison with some models is also shown in the
Table. Eichten and Quigg [7] use the potential of Buch-
müller and Tye [8]. This potential is particularly respect-
able, because at short distances it reproduces correctly the
two-loop result from QCD. Their agreement with experi-
ment is very good for the low masses, but for the higher
masses it deteriorates, with the error reaching almost 30
MeV for the 2P state. Kwong and Rosner [9] use the
masses of the known S and P states as input, calculate
from this input the potential and from this potential the
masses of the other states. Thus their method avoids the
bias due to a preconceived form of the potential. Their
results for the centres of gravity of the triplets agree in
general with ours, the greatest difference being 6 MeV for
the 3P states.

The results for the cc quarkonia are shown in Table 2.
It is seen that the approach of Eichten and Quigg is doing
much better here, about as well as ours. The results of
Gupta and Johnson are the best.

The results for the bc quarkonia are given in Table 3.
Since there are no experimental data, we included more
theoretical predictions. Many others can be found from
the references given in the papers used in our tables. Of
particular interest is the comparison of our results with
those of Gupta and Johnson [10]. Their fit is only slightly
worse than ours for the bb quarkonia and slightly better
than ours for the cc quarkonia. On the whole the quality
of the two fits is good (errors not exceeding a few MeV)
and comparable. Nevertheless, the physical assumptions

Table 3. Mass spectrum of the c̄b (b̄c) quarkonia below the
threshold for strong decays (mD +mB = 7143 MeV, mB∗ +mD

= 7189 MeV) in MeV. ∆X denotes the difference between the
mass of particle X and the centre of gravity of the spin triplet
part of the multiplet, where X belongs. (a) – particle above its
strong decay threshold

State CK EQ Ron Ger GJ Present
[11] [7] [6] [12] [10] paper

∆1 1S0 -45 -73 -65 -64 -41 -58
1 3S1 6355 6337 6320 6317 6308 6349

1 P (c.o.g.) 6764 6736 6753 6728 6753 6769
∆1 3P2 +9 +11 +27 +15 +20 +18
∆1 P1 0 0 0 +1 +4 +2.4
∆1 P1′ -4 -6 -13 -11 -15 -15
∆1 3P0 -36 -36 -93 -45 -64 -54
∆2 1S0 -27 -43 – -35 -33 -33
2 3S1 6917 6899 6900 6902 6886 6921

1 D (c.o.g.) – 7009 – 7009 – 7040
∆1 3D3 – -4 – +7 – +9.3
∆1 D2 – 0 – -2 – 0
∆1 D2′ – +3 – -8 – -2.5
∆1 3D1 – +3 – -1 – -18

2 P (c.o.g.) 7160 7142 – 7122 – 7165
∆2 3P

(a)
2 +6 +11 – +12 – +13

∆2 P1 0 0 – +2 – +1.9
∆2 P1′ -1 -7 – -9 – -11
∆2 3P0 -26 -34 – -34 – -39

behind them are very different. In particular Gupta and
Johnson use the complete relativistic expression for the ki-
netic energy of the quarks. They also use many more free
parameters than we do. For the bc quarkonia, as shown in
Table 3, the predictions of the two approaches differ signif-
icantly. The masses of the 3S states calculated by Gupta
and Johnson are larger than ours by about 40 MeV. For
the 1P state the difference is in the same direction, but
smaller – about 16 MeV. The potential in the model of
Yu-Qi Chen and Yu-Ping Kuang [11] is a modification of
the potential of Buchmüller and Tye. We quote only one
of the several versions, which they propose. The model
of Roncaglia et al. [6] does not use a potential, but ob-
tains the masses by assuming that for a given kind of
triplet resonances (e.g. for ground states) the mass of the
particle is a simple function of the reduced mass of its
constituent quarks. Then the masses of the unknown par-
ticles are obtained by interpolation or extrapolation from
the known masses. Gershtein et al. [12] use the Martin po-
tential [13] supplemented with some relativistic and QCD
inspired corrections. The scatter of the predictions is of
some tens of MeV and the two models, which agree par-
ticularly well with the data for the bb and cc quarkonia,
i.e. that of Gupta and Johnson and ours, are not close
to each other in their predictions here. A comparison with
the experimental data, when they come, will be, therefore,
of great interest.



110 L. Motyka, K. Zalewski: Mass spectra and leptonic decay widths of heavy quarkonia

3 Hyperfine splittings

The spin dependent correction to the nonrelativistic
Hamiltonian, which is responsible for the hyperfine split-
ting of the mass levels, is generally used in the form (cf.
e.g. [14])

HHF =
32παs

9mQmQ

(s1 · s2 − 1
4
)δ(r), (4)

adapted from the Breit-Fermi Hamiltonian. The number
1
4 subtracted from the product of the spins corresponds
to our assumption that the unperturbed nonrelativistic
Hamiltonian gives the energy of the triplet. Since for the
states with orbital angular momentum L > 0 the wave
function vanishes at the origin, the shift affects only the S
states. Thus, the only first order effect of the perturbation
(4) is to shift the 1S0 states down in energy by

∆EHF =
32παs

9mQmQ

|ψ(0)|2. (5)

In order to apply this formula one needs the value of the
wave function at the origin – this is obtained by solving the
Schrödinger equation with the nonrelativistic Hamiltonian
– and the coupling constant αs.

Like most authors (cf. e.g. [7]), we determine the cou-
pling constant αs(m2

c) from the well measured hyperfine
splitting of the 1S(cc) state. The experimental value [1]
117 ± 2 MeV yields

αs(m2
c) = 0.3376. (6)

Actually, the experimental uncertainty of the measured
hyperfine splitting introduces an uncertainty in this value,
but we think that other uncertainties in our calculation
are more serious and we do not keep track of this partic-
ular uncertainty. Knowing the coupling at the scale m2

c

we obtain the couplings at other scales as follows. The
formula including the NNLO terms from [1] is used to
correlate αs(µ2) with the parameters Λ(nf ). The number
of flavours (nf ) is put equal to three for µ2 ≤ m2

c (we are
not interested in the region µ2 ≤ m2

s), equal to four for
m2

b ≥ µ2 ≥ m2
c and equal to five for µ2 ≥ m2

b (we are
not interested in the region µ2 ≥ m2

t ). Then the value of
αs(m2

c) from (6) is used to calculate Λ(3) and Λ(4). Using
the known value of Λ(4) and the formula from [1] we find
the value

αs(m2
b) = 0.2064 (7)

From this the value of Λ(5) is found and further αs(m2
Z)

is calculated. The value αs(m2
Z) = 0.115 obtained from

this calculation agrees very well with the other determi-
nations of this parameter compiled by the Particle Data
Group [1]. Note that this supports our model, since a dif-
ferent choice of the Hamiltonian would in general lead to
a different value of the wave function at the origin and
to a different determination of αs(m2

c) from the same hy-
perfine splitting. Then the estimate of αs(m2

Z) would, of

course, be also different. For the hyperfine splitting of the
bc quarkonia we use the coupling constant

αs(4µ2
bc) = 0.2742, (8)

so that in each case the scale is twice the reduced mass of
the quark-antiquark system.

The calculated hyperfine splittings are given in Tables
1–3. No confirmed experimental data to check these pre-
dictions are available as yet. Let us note, however, that
the unconfirmed experimental splitting of the 2S(cc) level
– 92 MeV – is much bigger than expected from the mod-
els. In all cases, where comparison with the other mod-
els is possible, the hyperfine splittings predicted from our
model are significantly smaller than the splittings found
by Eichten and Quigg [7] and similar to, but usually a
little larger than, the splittings calculated by Gupta and
Johnson [10].

One can also try to compare our results with more am-
bitious approaches. A careful analysis in the framework
of QCD sum rules [15] finds for the hyperfine splitting
of the 1S(bb) state 63+29

−51 MeV. The central value agrees
very well with our expectation, but the uncertainty is too
large to distinguish between the potential models. A lat-
tice calculation [16] gives for the hyperfine splitting of the
1S(bc) state 60 MeV with a large uncertainty. Again the
central value is close to our model, but the uncertainty is
big enough to be consistent with all the potential models
quoted here.

Let us conclude this section with two comments. The
operator HHF , besides shifting the 1S0 energy levels by
its diagonal matrix elements, mixes the 1S0 states corre-
sponding to various principal quantum numbers. Formally
this gives significant corrections to the energy levels. These
corrections, however, are second and higher order in the
perturbation. We follow the usage of assuming that they
cancel with other second and higher order corrections be-
yond our control. At first order there are only small ad-
mixtures of other 1S0 states in any given 1S0 state. These,
however, seem of little interest. The QCD corrections to
hyperfine splittings have been calculated in various ap-
proximations (cf. [17] and references given there). Since
these corrections are small and controversial (it has been
argued that they cancel with other correction [17]), we do
not include them in our model.

4 Leptonic decay widths

The leading terms in the leptonic decay widths of the
heavy quarkonia are proportional to the squares of the
wave functions at the origin. Therefore, they are signifi-
cant only for the S states. For the bb quarkonia and the cc
quarkonia we shall consider the decays of the 3S (vector)
states into pairs of charge conjugated charged leptons, e.g.
for definiteness into e+e− pairs. For the bc quarkonia we
consider the decays of the 1S (pseudoscalar) states into
τντ pairs. Since the probability of such decays contains
as a factor the square of the lepton mass, the decays into
lighter leptons are much less probable.
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Table 4. Leptonic widths in keV

State EQ Present Experiment
[7] paper

1 3S1 (c̄c) 8 4.5 ± 0.5 5.3 ± 0.4
2 3S1 (c̄c) 3.7 1.9 ± 0.2 2.1 ± 0.2
1 1S0 (c̄b) 4.0 · 10−8 2.8 · 10−8 —
2 1S0 (c̄b) — 1.6 · 10−8 —
1 3S1 (b̄b) 1.7 1.36 ± 0.07 1.32 ± 0.05
2 3S1 (b̄b) 0.8 0.59 ± 0.03 0.52 ± 0.03
3 3S1 (b̄b) 0.6 0.40 ± 0.02 0.48 ± 0.08

The decay widths of the vector bb and cc quarkonia
into charged lepton pairs are usually calculated from the
QCD corrected Van Royen - Weisskopf formula [18], [19]

ΓV →ll = 16πα2e2Q
|ψ(0)|2
M2

V

(
1 − 16αs(m2

Q)
3π

)
. (9)

For vector mesons containing light quarks this formula
leads to paradoxes (cf. [20] and references contained
there). For quarkonia, however, the main problem seems
to be the QCD correction. Using the coupling constants
αs(m2

Q) found in the preceding section one finds that the
correction linear in αs is 57 per cent for cc and 35 per cent
for bb. Thus in order to get quantitative predictions it is
necessary to include higher order corrections, which, how-
ever, are not known. In order to guestimate the missing
terms we tried two simple Ansätze. Exponentialization of
the first correction yields

C1(αs(m2
Q)) = exp

(
−16αs(m2

Q)
3π

)
, (10)

while Padéization gives

C2(αs(m2
Q)) =

1

1 +
16αs(m2

Q
)

3π

. (11)

We use the arithmetic average of these two estimates as
our estimate of the QCD correction factor extended to
higher orders. The difference between C1 and C2 is our
crude evaluation of the uncertainty of this estimate. The
resulting leptonic widths are collected in Table 4. Combin-
ing in quadrature the experimental errors with our esti-
mates of the theoretical uncertainties we get a good overall
agreement (χ2/ND = 5.9/5). About half of the χ2, how-
ever, comes from the decay width of the 23S(bb), where
the predicted value is significantly larger than the newly
included experimental value [1]. Thus here there may be
a problem. Let us note the relation

ΓV →ll =
9
8

4m2
Q

M2
V

α2e2Q
αs(m2

Q)
Cav∆EHF , (12)

where Cav is the QCD correction factor. With our choice
of parameters this formula reduces to

ΓV →ll = F (Q)
4m2

Q

M2
V

∆EHF , (13)

with F (c) = 4.73 · 10−5 and F (b) = 2.33 · 10−5.
The formula for the leptonic widths of the pseudoscalar

bc quarkonia reads

Γτν =
G2

8π
f2

Bc
|Vcb|2MBc

m2
τ

(
1 − m2

τ

M2
Bc

)2

, (14)

where G is the Fermi constant, Vcb ≈ 0.04 is the element of
the Cabibbo-Kobayashi-Masakawa matrix and the decay
constant fBc

is given by the formula (cf. e.g. [21])

f2
Bc

=
12|ψ(0)|2
MBc

C
2
(αs), (15)

where C(αs) is a QCD correction factor. Formally this
decay constant is defined in terms of the element of the
axial weak current

〈0|Aµ(0)|Bc(q)〉 = ifBcVcbqµ. (16)

Thus it corresponds to fπ ≈ 131 MeV. The QCD correc-
tion factor is [21]

C(αs) = 1 − α(4µ2
bc)

π

[
2 − mb −mc

mb +mc
log

mb

mc

]
. (17)

With our parameters C(αs) ≈ 0.885 and since this is
rather close to unity, we use it without trying to estimate
the higher order terms.

Substituting the numbers one finds the decay widths
given in Table 4. The corresponding decay constants for
the ground state and for the first excited S-state of the bc
quarkonium are fBc = 435MeV and fBc = 315 MeV.

Let us note the convenient relation

f2
Bc

=
27µbc

8παs(4µ2
bc)

mb +mc

MBc

C
2
(αs)∆EHF , (18)

which for our values of the parameters yields

fBc
= 57.6

√
6199
MBc

√
∆EHF , (19)

where all the parameters are in suitable powers of MeV.

5 Fine structure of the levels

The spin dependent correction to the nonrelativistic
Hamiltonian, which is responsible for the fine splittings,
is also modelled on the Breit-Fermi Hamiltonian [7], [12].
It can be decomposed into a part, which is antisymmetric
with respect to the spins of the constituents

VA(r) =
1
4

(
1
m2

Q

− 1
m2

Q

)(
−1
r

dV (r)
dr

+
8αs

3r3

)
L

·(sQ − sQ), (20)
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where V (r) is the nonrelativistic potential (1), and a part
symmetric in these spins. The symmetric part can be de-
composed into a spin-orbit coupling

VLS(r) =
1
4

(
1
m2

Q

+
1
m2

Q

)(
−1
r

dV (r)
dr

+
8αs

3r3

)
L · S

+
4αs

3mQmQ

1
r3

L · S, (21)

where
S = sQ + sQ, (22)

and a tensor part

VT (r) =
4αs

3
1
r3

[3(sQ · n̂)(sQ · n̂) − sQ · sQ], (23)

where the versor n̂ = r
r . In the first perturbative approxi-

mation these corrections to the Hamiltonian not only shift
the mass levels, but also mix some states with different
values of the orbital angular momentum and spin.

Let us note some useful selection rules. Angular mo-
mentum and parity are good quantum numbers, therefore
states with different J and/or P do not mix. States with
orbital angular momenta differing by one unit do not mix,
because parity is a good quantum number, and states with
angular momenta differing by more than two units cannot
mix because of the Eckart-Wigner theorem. From symme-
try with respect to the exchange of spins in the LS basis,
the operator VA can only contribute to matrix elements
between the spin singlet and spin triplet states. The other
two operators contribute only to the matrix elements be-
tween spin triplet states. When Q is the charge conjugate
of Q, charge conjugation C = (−1)L+S is a good quantum
number and states with different spins do not mix. The
matrix elements between spin singlet states vanish; thus,
when spin is a good quantum number, we predict within
each spin multiplet with L > 0 :

M(1L) = Mc.o.g.(3L), (24)

Here the centre of gravity of the triplet is defined by the
usual formula

Mc.o.g.(3L) =
[
(2L+ 3)M(3LL+1) + (2L+ 1)M(3LL)

+(2L− 1)M(3LL−1)
]/[

3(2L+ 1)
]
. (25)

There is no firmly established experimental data to test
this prediction, but most models and the preliminary data
for the 11P1(cc) state agree with it within about 1 MeV. Of
course, this prediction is common to all the models, which
use the spin dependent corrections to the Hamiltonian as
given here.

Since the wave function of the quarkonium in the LS
basis factorizes into a space part and a spin part, the ma-
trix elements of the space operators and of the spin oper-
ators can be calculated separately. The necessary matrix
elements for the spin operators between spin triplet states
are

〈J, L′, 1|L · S|J, L, 1〉
=

1
2
[J(J + 1) − L(L+ 1) − 2]δLL′ (26)

〈L+ 1, L, 1|3(sQ · n̂)(sQ · n̂) − sQ · sQ|L+ 1, L, 1〉

= − 2L
2L+ 3

, (27)

〈L,L, 1|3(sQ · n̂)(sQ · n̂) − sQ · sQ|L,L, 1〉 = 2, (28)

〈L− 1, L, 1|3(sQ · n̂)(sQ · n̂) − sQ · sQ|L− 1, L, 1〉

= −2(L+ 1)
2L− 1

, (29)

〈L+ 1, L− 2, 1|3(sQ · n̂)(sQ · n̂) − sQ · sQ|L+ 1, L, 1〉

=
3
√
L(L− 1)

2(2L− 1)
. (30)

The only necessary nonzero matrix element between a spin
singlet and spin triplet state is

〈L,L, 0|L · (sQ − sQ)|L,L, 1〉 =
√
L(L+ 1) (31)

Let us consider now the two matrix elements in coordinate
space. The calculation of the matrix elements of the oper-
ator 1

r
dV (r)

dr is standard, but the calculation of the matrix
elements of the operator αs

r3 requires an interpretation of
αs. We propose to interpret αs as a function α̃s(r) defined
as follows

α̃s(r) =
12π

33 − 2nf

(Λ̃(nf )r)2 − 1

log
[
(Λ̃(nf )r)2

] , (32)

where nf equals three for r < 1
mc

, equals four for 1
mc

<

r < 1
mb

and equals five for r > 1
mb

. The parameter Λ̃(4) is
obtained from the conditions α̃( 1

mc
) = α(m2

c) and α̃( 1
mb

)
= α(m2

b). Each of these conditions gives a slightly different
Λ̃(4). We use the geometric mean of the two results. They
are so close to each other that taking the arithmetic mean
instead of the geometrical one makes no difference within
our precision. Knowing Λ̃(4) we recalculate α̃s(r) at r =
1

mb
and r = 1

mc
and fix Λ̃(3) and Λ̃(5) so that the function

α̃s(r) is continuous at these points. We find

Λ̃(3) = 0.1657 GeV, Λ̃(4) = 0.1384 GeV,
Λ̃(5) = 0.1015 GeV. (33)

Our form of the function α̃s(r) is, of course, inspired by
the standard one-loop formula for αs. The numerator is
introduced in order to compensate the zero of the denom-
inator at Λ̃(3)r = 1. Its exact form has little effect in the
range of r dominating the integrals.

The calculations for the bb and cc quarkonia, where C
is a good quantum number, and for the J = L±1 states of
the bc quarkonia, which must be spin triplets, involve only
the energy shifts due to the symmetric spin orbit interac-
tion and to the tensor interaction. The singlet and triplet
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J = L states of the bc quarkonia mix under the influence
of the antisymmetric spin-orbit interaction. The results of
the calculations are given in Tables 1-3. For the bb quarko-
nia experimental data is available for the splittings of the
1P and 2P states. Agreement between our model and this
data is within about 1 MeV. The agreement with other
models is within 5 MeV, i.e. much better than for the hy-
perfine splittings. A similar agreement with the model of
Kwong and Rosner holds for the 3P states, but for higher
angular momenta the discrepancies increase. We predict
much larger splittings. In particular for the F states we
predict a splitting of about 13 MeV, while Kwong and
Rosner expect a negligible splitting within about 1 MeV.
Even for the G states we expect a splitting of about 10
MeV. Thus, the L-dependence of the fine splittings is seen
as an important observable to distinguish between models.
For the 1P (cc) states our splittings agree with experiment
and with the very good predictions of Gupta and Johnson
about as well as for the centres of gravity of the triplets
i.e. within about 5 MeV. The splittings predicted by the
model of Eichten and Quigg are too small by about a fac-
tor of two. For the bc quarkonia our predictions for the
1P states agree with Gupta and Johnson within about 2
MeV except for J = 0, where our splitting is smaller by
10 MeV. For the 1D and 2P states there are only the pre-
dictions of Eichten and Quigg [7] and of Gershtein et al.
[12] for comparison. There is rough qualitative agreement
except for the 3D1 state, where we predict a down shift
by almost 20 MeV, while the other models find only very
small shifts.

The mixing between the spin singlet and the spin trip-
let states can be parameterized in terms of mixing angles.
We find sinφ1P = 0.374, sinφ2P = 0.385 and sinφ1D =
0.244. Thus the mixing within the two P multiplets is al-
most the same, while the mixing among the D states is
somewhat smaller. Both these results contradict the re-
sults of Gershtein and collaborators [12], who find that
mixing increases when going from the 1P to the 2P states
and from the 2P to the 1D states. A possible reason for
this discrepancy is that these authors use for the mixing
formulae, which are different from ours. In particular their
singlet-triplet mixing does not vanish for mQ = mQ. As
compared with Eichten and Quigg, who have calculated
mixing only for the P states, we have rough agreement
for the 2P states (they find sinφ2P = 0.290), while they
find much less mixing for the 1P states (sinφ1P ≈ 0.06).

The mixing of spin triplet states differing by two units
of orbital angular momentum (L − 2, L) is small. In our
model we find mixing angles of order 10−3 or less. It seems
of little interest, except that it enhances the leptonic decay
widths of the L ≥ 2 states (cf. e.g. [22]). This enhance-
ment, however, is difficult to calculate reliably, because a
given high L state mixes with various L−2 states and the
states above the strong decay threshold are also important
for this analysis.

6 Conclusions

We propose a model containing six free parameters: the
three parameters in the nonrelativistic potential (1), the
masses of the c and b quarks (2) and the strong coupling
at the mc scale (6). This model is applicable to all the
heavy quarkonia below their strong decay thresholds.

We obtain for the bb quarkonia 12 quantities (five spin
averaged masses, four independent mass differences due
to fine splittings and three leptonic decay widths) in good
overall agreement with experiment. The least successful
predictions are for the fine structure shift of the 23P1
state, which is measured to be −4.8 ± 0.5 MeV, while
we find −6.0 MeV and for the leptonic decay width of
the 23S(bb) state, where we find (0.59 ± 0.03) KeV, while
the newly included experimental result [1] is (0.52 ± 0.03)
KeV. For the cc quarkonia we find 8 quantities, which can
be compared with experiment (six masses and two lep-
tonic widths). Here in most cases the difference between
the measured value and the prediction exceeds the exper-
imental error, but the errors in the mass predictions do
not exceed a few MeV and the errors in the leptonic de-
cay widths do not exceed 1.6 s.d.. On the whole, with 6
parameters we predict 20 quantities in good (for bb) or fair
(for cc) agreement with experiment. The only other model
known to us, which has a comparable record, is the model
of Gupta and Johnson [10], but this model has many more
free parameters.

We give predictions for the yet unmeasured masses
of the quarkonia and for the leptonic widths of the bc
quarkonia. The predictions are listed in Tables 1-4. Here
we would like to make the following general remarks. Our
model predicts much larger fine splittings at high L than
the model of Kwong and Rosner [9]. We also find signifi-
cantly heavier bc resonances than Gupta and Johnson [10],
which is remarkable, because the two models give similar
descriptions of the charmonia and of the bottomonia. The
discrepancy is in the spin averaged masses. The splittings
of the levels, except for the hyperfine splitting of the 1S
level, are similar.
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